Antiferromagnetic model on 2 D quasiperiodic tilings

نویسندگان

  • Attila SZÁLLÁS
  • Françoise Hippert
  • Didier Mayou
  • Timothy Ziman
چکیده

Solides Heisenberg Antiferromagnetic model on 2D quasiperiodic tilings Thèse presentée pour obtenir le grade de

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster Interactions for Quasiperiodic Tilings

A cluster for the octagonal square-rhombus tiling is presented, which has the property that among all tilings completely covered by the cluster the perfectly quasiperiodic and eightfold symmetric ones have the highest cluster density. Since on these eightfold symmetric tilings there is considerable overlap of clusters, it seems likely that these tiling have the highest cluster density even amon...

متن کامل

On Quasiperiodic Space Tilings, Inflation, and Dehn Invariants

Abstract We introduce Dehn invariants as a useful tool in the study of the inflation of quasiperiodic space tilings. The tilings by “golden tetrahedra” are considered. We discuss how the Dehn invariants can be applied to the study of inflation properties of the six golden tetrahedra. We also use geometry of the faces of the golden tetrahedra to analyze their inflation properties. We give the in...

متن کامل

Numerical entropy and phason elastic constants of plane random tilings with any 2D-fold symmetry

– We perform Transition matrix Monte Carlo simulations to evaluate the entropy of rhombus tilings with fixed polygonal boundaries and 2D-fold rotational symmetry. We estimate the large-size limit of this entropy for D = 4 to 10. We confirm analytic predictions of N. Destainville et al., J. Stat. Phys. 120, 799 (2005) and M. Widom et al., J. Stat. Phys. 120, 837 (2005), in particular that the la...

متن کامل

Self-avoiding walks and polygons on quasiperiodic tilings

We enumerate self-avoiding walks and polygons, counted by perimeter, on the quasiperiodic rhombic Penrose and Ammann-Beenker tilings, thereby considerably extending previous results. In contrast to similar problems on regular lattices, these numbers depend on the chosen initial vertex. We compare different ways of counting and demonstrate that suitable averaging improves convergence to the asym...

متن کامل

Quasiperiodic Tilings: A Generalized Grid–Projection Method

We generalize the grid–projection method for the construction of quasiperiodic tilings. A rather general fundamental domain of the associated higher dimensional lattice is used for the construction of the acceptance region. The arbitrariness of the fundamental domain allows for a choice which obeys all the symmetries of the lattice, which is important for the construction of tilings with a give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009